Ch'as consìdera na bijession , con f(x)=y.
Ch'as denòta con g la fonsion anversa.
Ël teorema dla fonsion anversa a fortiss che si f a l'é derivàbil ant ël pont x con e g a l'é continua ant ël pont y, antlora g a l'é derivàbil an y e soa derivà a l'é .
A venta armarché che mach j'ipòtesi che a sia bijetiva e derivàbil an x e che a basto pa a garantì che a sia continua an y=f(x).
Da la derivabilità d'f, i l'oma che për a-i val la relassion
- , con .
Pijà , ch'as consìdera h tal che , visadì .
Antlora .
Dagià che a l'é continua an y, a-i na ven che .
An dzorpì, as peul armarchesse che, dagià che e a l'é infinitésim për , i l'oma cand k a resta an n'anviron assè cit ëd 0.
Donca
- .
Ch'as consìdera la fonsion y=f(x)=tanx, dont la derivà a l'é e l'anversa a l'é la fonsion .
An aplicand ël teorema i otnoma
- .
|
|