Ch'as consìdera un camp algebricaman sarà K e ch'as denòta lë strop dle matris a element an K e determinant ugual a 1.
Në strop algébrich linear ansima a K a l'é un sot-ëstrop G ëd chèich andoa a val la propietà sì-dapress:
- A-i é n'ansem S ëd polinòmi an tal che a l'é an G si e mach si për tut .
Në strop algébrich linear ansima a K as dis soens mach un K-strop.
Ch'as pijo dij K-strop e .
N'omomorfism dij K-strop a l'é n'omomorfism djë strop astrat ch'a l'abia la propietà si-dapress:
- A-i son dij polinòmi , për , ant j'indeterminà , con taj che për minca l'element ëd pòst (i,j) ëd a l'é .
|
|