Anàlisi fonsional
Vos an lenga piemontèisa | |
Për amprende a dovré 'l sistema dle parlà locaj ch'a varda sì. |
L'anàlisi fonsional a l'é ël setor dla matemàtica, e an particolar dl'anàlisi, ch'a l'ha tanme but lë studi dë spassi ëd fonsion. A fonga soe rèis ëstòriche ant lë studi dle trasformà tanme la trasformà ëd Fourier e ant lë studi dj'equassion diferensiaj e antëgraj. La paròla fonsional a ven dal càlcol dle variassion, e as arferiss a na fonsion dont l'argoment a l'é na fonsion. Sò usage an sens motobin general a l'é atribuì a Volterra. Spassi vetoriaj normà[modìfica | modifiché la sorgiss]Ant la vision moderna, l'anàlisi fonsional a l'é considerà tanme lë studi dë spassi vetoriaj normà complet an sël camp real o compless. Costi spassi a son ciamà spassi ëd Banach. N'esempi amportant a son jë spassi ëd Hilbert anté che la nòrma a ven da 'n prodot antern. Costi spassi a son d'amportansa fondamental ant la formolassion matemàtica dla mecànica quantìstica. Motobin pì an general, l'anàlisi fonsional a comprend lë studi djë spassi ëd Fréchet e d'àutri spassi vetoriaj topològich nen dotà ëd na nòrma. N'oget dë studi amportant ant l'anàlisi fonsional a son j'operator linear continuo definì su spassi ëd Banach e ëd Hilbert. An sa manera a l'é rivasse ëd fasson natural a la definission ëd C*-àlgebra e d'àutre àlgebre d'operator. An dzorpì, l'anàlisi fonsional a treuva aplicassion ant lë studi dij métod numérich dovrà për l'arzolussion d'equassion diferensiaj, con l'agiut dl'ordinator. N'esempi ëd costi métod a l'é ël métod ëd Galerkin për aprossimé e arzòlve la formulassion débola dl'equassion diferensial. Spassi ëd Banach[modìfica | modifiché la sorgiss]Bon-a part dl'anteresse dl'anàlisi fonsional për jë spassi ëd Banach a l'é consentrà ant lë studi dlë spassi doal, visadì lë spassi ëd tuti ij fonsionaj linear continuo.
Në spassi ëd Banach a l'é nen an general isomòrf a sò doal, ma a-i é un monomorfism natural antra lë spassi e sò bi-doal (ël doal dël doal). Spassi ëd Hilbert[modìfica | modifiché la sorgiss]Minca spassi ëd Hilbert a l'é determinà, a men d'isomorfism, da la cardinalità ëd na base.
Jë spassi ëd dimension finìa a son ëstudià dzortut da l'àlgebra linear.
L'anàlisi fonsional as anteressa dzortut a l'ùnich ëspassi ëd Hilbert ëd dimension . Prinsipi fondamentaj[modìfica | modifiché la sorgiss]L'anàlisi fonsional as basa ansima a chèich arzultà fondamentaj dont a-i ven tuta la teorìa.
Considerassion ëd lògica matemàtica[modìfica | modifiché la sorgiss]La pì part djë spassi considerà ant l'anàlisi fonsional a l'han dimension infinìa. Për mostré l'esistensa ëd na base për costi spassi as deuvra ël lema ëd Zorn (che a l'é equivalent a l'assiòma ëd selession). Vàire teorema motobin amportant a deuvro ël teorema ëd Hahn-Banach ch'a l'ha da manca dël lema ëd Zorn ant ël cas general ëd në spassi ëd dimension infinìa. |